
WhatɅs new in F# 8
[Tomáš Grošup; Adam Boniecki; Petr Semkin;]

Microsoft -> DevDiv -> F# Compiler & Tools

Code available at T-Gro/FSharp8_news: Examples of new F#8 features
(github.com)

https://github.com/T-Gro/FSharp8_news
https://github.com/T-Gro/FSharp8_news

Use F#

ÅF# Software Foundation (fsharp.org)

Ådotnet/ fsharp ă code is here

Åfsharp /fslang-suggestions ă + discussions

Åfsharp /fslang-design ă RFCs here

Microsoft Confidential

https://fsharp.org/

Areas of F#8 improvements

ÅFsharp.Core library additions

ÅFsharp.Core performance optimizations

ÅLanguage features

ÅDiagnostics ɀ new & reworked

ÅImproved support for .NET features ɀ ref assemblies,
trimming

ÅBugfixes , compiler performance and much more

Compiler performance

Å Robustness of reference assemblies (reducing the
effect of F# embedded resources Ƶ signature data,
reducing optimization data in DEBUG scenarios)
Å => faster rebuilds in case of changing implementation

details only! (also: <AccelerateBuildsInVisualStudio >true</..>)

Å Optional (exp.) feature flags:
Å Parallel Graph - based typechecking

Å Parallel Optimization

Å Parallel IL code generation

Build lib and copy over

OR globally like this: $env:FSHARP_EXPERIMENTAL_FEATURES = '1'

--test:GraphBasedChecking

--test:ParallelOptimization

--test:ParallelIlxGen

<OtherFlags>--test:..</..>

Array.Parallel.* functions
Å filter,zip,min,max,sum,average,reduce + ..by

Å groupBy,sorting,tryFindIndex,tryFind,tryPick

Method	Categories	Mean	Ratio	Allocated	Alloc Ratio
----------------------	------------------------------	------------- :	--------- :	---------- :	------------ :
ArrayGroupBy2	GroupBy - calculation	169,024.8 us	baseline	70.17 MB	
PlinqGroupBy2	GroupBy - calculation	74,683.8 us	- 56%	103.93 MB	+48%
ArrayParallelGroupBy2	GroupBy - calculation	62,574.3 us	- 63%	70.61 MB	+1%
ArrayGroupBy	GroupBy - field only	14,274.3 us	baseline	57.28 MB	
PlinqGroupBy	GroupBy - field only	30,933.6 us	+117%	88.77 MB	+55%
ArrayParallelGroupBy	GroupBy - field only	18,318.6 us	+29%	47.72 MB	- 17%
ArrayMinBy	MinBy(calculationFunction)	157,463.5 us	baseline	11.44 MB	
PlinqMinBy	MinBy(calculationFunction)	160,243.5 us	+2%	11.44 MB	+0%
ArrayParallelMinBy	MinBy(calculationFunction)	48,768.7 us	- 68%	11.45 MB	+0%
ArraySort	Sort - by int field	27,352.1 us	baseline	17.17 MB	
PlinqSort	Sort - by int field	38,723.7 us	+42%	172.89 MB	+907%
ArrayParallelSort	Sort - by int field	76,744.8 us	+179%	112.76 MB	+557%
ArraySortBy	SortBy - calculation	214,042.4 us	baseline	30.52 MB	
PlinqSortBy	SortBy - calculation	97,214.3 us	- 55%	193.99 MB	+536%
ArrayParallelSortBy	SortBy - calculation	125,951.7 us	- 41%	130.49 MB	+328%
ArraySumBy	SumBy(plain field access)	466.7 us	baseline	-	NA
PlinqSumBy	SumBy(plain field access)	984.1 us	+112%	0.01 MB	NA
ArrayParallelSumBy	SumBy(plain field access)	687.6 us	+47%	0.01 MB	NA
ArrayTryFind	TryFind - calculationFunction	76,509.7 us	baseline	5.72 MB	
PlinqTryFind	TryFind - calculationFunction	41,256.7 us	- 47%	10.74 MB	+88%
ArrayParallelTryFind	TryFind - calculationFunction	23,094.4 us	- 69%	5.73 MB	+0%

Microsoft Confidential

Lambda shorthand: _.Prop /
_.MethodCall () / _.Indexer[]

Nested Record Field Copy and Update

Uniformity: These are possible now!

Å Static members in interfaces

ÅƥÓÔÁÔÉÃ ÌÅÔƦ ƽ˩ ÍÕÔÁÂÌÅƾƗ ƥÓÔÁÔÉÃ ÄÏƦ ÁÌÌÏ×ÅÄ ÉÎƙ
Å Discriminated unions

Å Records

Å Structs

Å Types without constructor arguments

Å Try - with can be used inside seq{} expressions
Å Also applies to more complex [] and [||] builders

Static members in interfaces

Static let

Try-with in seq{}

Another chance to answer
your questions.

(Tomas has to leave)

Printing ɀ extended interpolation
syntax
New syntax for string interpolation in F# - .NET
Blog (microsoft.com)

Number of $ at the beginning dictates the number of
{ for including values, less { do not need escaping.

https://devblogs.microsoft.com/dotnet/new-syntax-for-string-interpolation-in-fsharp/
https://devblogs.microsoft.com/dotnet/new-syntax-for-string-interpolation-in-fsharp/

Printing ɀ use literals for printfn family

Compose print formats from reusable snippets, DRY

Arithmetic operators in literals

Å +, - ,*, /, %, &&&, |||, <<<, >>>, ^^^, ~~~, **

Å not, &&, || are allowed for bools.

While! (while bang) in computation
expressions

Extended fixed bindings
Before F#8, statements of
the following form:
use ptr = fixed expr were
allowed :

Array

String

Address of an array
element

Address of a field

Newly added support:
byref <'t>

inref <'t>

outref <'t>

any 'a when 'a has an
instance method
GetPinnableReference :
unit - > byref ˱ƥÔ˲ OR
inref ˱ƥÔ˲
(or extension method)

Extended fixed bindings

Type constraint intersection syntax Ɉ&ɉ

Quality of life

Å Trimmability Ƶ discriminated unions, records,
anonymous records now trimmable Ƶ for Native AOT

Å [<Struct>] Discriminated Unions can now have > 49
cases

Fsharp.Core - performance
improvements of library functions
Å ValueOption Ƶ functions + lambdas inlined <- map 1.5x faster

Å Option Ƶ functions + lambdas inlined <- 3x faster for map

Å List.contains inlines type equality <- 16x faster for int

Å List<_>. GetHashCode() no longer stack overflows at >
50.000 elements

Å Seq.toArray reduced allocations for small sizes

Å Reflection - > FsharpType.MakeStructTupleType has a new
faster overload without Assembly argument

Å Binding (let!) of async within a task{} expression
starts on the same thread now

Visual Studio updates
for F#

